|
发表于 2023-11-1 10:27:31
|
显示全部楼层
较完整的求解如下:
- Clear["Global`*"];(*获得各点的表示*)points = {A->0, C->c,B->c ( 1 - I Tan[\[Theta]] )/(1 + I Tan[\[Phi] - \[Theta]]), D->c ( 1 - I Tan[\[Theta]] )/(1 - I Tan[\[Phi]]),T->c (1-I Tan[\[Theta]])/(1-I u)};assums = {0 < \[Theta] < \[Pi]/2, \[Theta] < \[Phi] < \[Pi]/2};AppendTo[points, P->Factor[ComplexExpand[Re[D/.points]]]//FullSimplify];(*面积计算*)kernel = -(1/2)Factor[ComplexExpand[Im[# * D[ComplexExpand[Conjugate[#]], u]]]]&@((T-P)/.points);integral = Integrate[kernel, u];area1 = Limit[integral, u->-Tan[\[Phi] - \[Theta]]] - Limit[integral, u->-\[Infinity]];area1 = FullSimplify[area1, Assumptions->assums];area2 = Limit[integral, u->Tan[\[Theta]]] - Limit[integral, u->-Tan[\[Phi] - \[Theta]]];area2 = FullSimplify[area2, Assumptions->assums];area3 = Limit[integral, u-> Tan[\[Phi]]] - Limit[integral, u->Tan[\[Theta]]];area3 = FullSimplify[area3, Assumptions->assums];area4 = Limit[integral, u->\[Infinity]] - Limit[integral, u->Tan[\[Phi]]];area4 = FullSimplify[area4, Assumptions->assums];areas = {area1, area2, area3, area4};(*数值求解*)eqs = {area1 - 25, area2 - 20, area3 - 12};sols = FindRoot[ eqs == 0, {c, 5}, {\[Theta], \[Pi]/4}, {\[Phi], \[Pi]/3}, WorkingPrecision->100];Print["待求区域面积为: ", area4/.sols]; (*公式求解, 消元参数c*)eq1 = Factor[SubresultantPolynomialRemainders[eqs[[1]], eqs[[2]], c][[-1]]];eq1 = FactorList[eq1][[-1]][[1]];Print["条件式1:", eq1]; eq2 = Factor[SubresultantPolynomialRemainders[eqs[[3]], eqs[[2]], c][[-1]]];eq2 = FactorList[eq2][[-1]][[1]];Print["条件式2:", eq2]; eq3 = Factor[SubresultantPolynomialRemainders[(area4 - S), eqs[[2]], c][[-1]]];eq3 = FactorList[eq3][[-1]][[1]];Print["待求区域面积表示:", Solve[eq3 == 0, S]//Factor//Flatten];
复制代码
这将给出如下输出
再人工化简一下即可:- Clear["Global`"];eqs = {32 \[Pi]+77 \[Theta]-90 \[Phi]+32 Sin[\[Theta]]-45 Sin[\[Theta]-2 \[Phi]], 8 \[Pi]-37 \[Theta]-37 Sin[\[Theta]]+90 Sin[\[Theta]-\[Phi]]+90 Sin[\[Phi]]};sols = FindRoot[eqs == 0, {\[Theta], \[Pi]/2}, {\[Phi], (2 \[Pi])/3}, WorkingPrecision -> 1000];area = (3 (11 \[Pi]-19 \[Theta]-19 Sin[\[Theta]]))/(\[Pi]+\[Theta]+Sin[\[Theta]]);Print["待求面积为: ", area /. sols]
复制代码 这里所给的表示与前面的有细微差异. |
本帖子中包含更多资源
您需要 登录 才可以下载或查看,没有帐号?立即注册
x
|