|
设函数\(\small f\left( x,a,b,c,d,e \right) = \text{Hypergeometric2F1}\left[ { - 1/2, - 1/2,1,{x^2}} \right] - \left( {1 + \frac{{3{x^2}}}{{10 + \sqrt {4 - 3{x^2}} }}} \right) - \frac{3}{{{2^{17}}}}{x^{10}}\left( {1 + \frac{{\left( {\frac{{79}}{{48}} + 19.7356722060508967x} \right)x^2}}{{\left( {1 + ax^b\left( {1 - x^c} \right)^d} \right)^e}}} \right)\)
其中,\(a、b、c、d、e \in R\),\(0 < x < 1\)。求\(M = \mathop {\mathop {\min }\limits_{a,b,c,d,e} }\limits_{0 < x < 1} \;\left\{ {f\left( x \right)} \right\}\)及其此时的各参数a,b,c,d,e值。
给定一组初始值:\(\left\{ {\begin{array}{*{20}{c}}
{\begin{array}{*{20}{c}}
{{ \rm{a = 4}}{\rm{.6}}}\\
{{\rm{b = 0}}{\rm{.457}}}
\end{array}}\\
{{\rm{c = 2}}{\rm{.657}}}\\
{\begin{array}{*{20}{c}}
{{\rm{d = 0}}{\rm{.95}}}\\
{{\rm{e = 1}}{\rm{.2}}}
\end{array}}
\end{array}} \right.\)
下面是编程图片:
附编程代码:- \[Beta]=0.558r=0.144\[Eta]=0.675f[x_]:=1-r^xg[x_]:=1-(1-\[Beta])/f[\[Beta]] f[(x-1)/(\[Beta]-1) \[Beta]]p0[x_]:=((1-Floor[x/\[Beta]])\[Beta] f[x]/f[\[Beta]]+Floor[x/\[Beta]]g[x])^\[Eta]p[n_]:=p0[n/100]H[x_]:=(1/((3/2^17)x^10))(Hypergeometric2F1[-1/2,-1/2,1,x^2]-(1+(3x^2)/(10+\[Sqrt](4-3x^2))))W[x_,a_,b_,c_,d_,e_]:=(( 79/48+19.7356722060508967x) x^2)/(1+a x^b(1-x^c)^d)^eU[a_,b_,c_,d_,e_]:=1/2 \!\(\*UnderoverscriptBox[\(\[Sum]\), \(k = 1\), \(99\)]\(\((1 + W[p[k], a, b, c, d, e] - H[p[k]])\)^2\)\)u[a_,b_,c_,d_,e_]:=-\!\(\*UnderoverscriptBox[\(\[Sum]\), \(k = 1\), \(99\)]\(\((1 + W[p[k], a, b, c, d, e] - H[p[k]])\) \*FractionBox[\(e\ \*SuperscriptBox[\((p[k])\), \(b\)]\ \*SuperscriptBox[\((1 - \*SuperscriptBox[\((p[k])\), \(c\)])\), \(d\)]\), \(1 + a\ \*SuperscriptBox[\((p[k])\), \(b\)]\ \*SuperscriptBox[\((1 - \*SuperscriptBox[\((p[k])\), \(c\)])\), \(d\)]\)] W[p[k], a, b, c, d, e]\)\)v[a_,b_,c_,d_,e_]:=-\!\(\*UnderoverscriptBox[\(\[Sum]\), \(k = 1\), \(99\)]\(\((1 + W[p[k], a, b, c, d, e] - H[p[k]])\)\ \*FractionBox[\(a\ e\ \*SuperscriptBox[\((p[k])\), \(b\)]\ \*SuperscriptBox[\((1 - \*SuperscriptBox[\((p[k])\), \(c\)])\), \(d\)]\ Log[p[k]]\), \(1 + a\ \*SuperscriptBox[\((p[k])\), \(b\)]\ \*SuperscriptBox[\((1 - \*SuperscriptBox[\((p[k])\), \(c\)])\), \(d\)]\)] W[p[k], a, b, c, d, e]\)\)w[a_,b_,c_,d_,e_]:=\!\(\*UnderoverscriptBox[\(\[Sum]\), \(k = 1\), \(99\)]\(\((1 + W[p[k], a, b, c, d, e] - H[p[k]])\)\ \*FractionBox[\(a\ d\ e\ \*SuperscriptBox[\((p[k])\), \(b + c\)]\ \*SuperscriptBox[\((1 - \*SuperscriptBox[\((p[k])\), \(c\)])\), \(\(-1\) + d\)]\ Log[p[k]]\), \(1 + a\ \*SuperscriptBox[\((p[k])\), \(b\)]\ \*SuperscriptBox[\((1 - \*SuperscriptBox[\((p[k])\), \(c\)])\), \(d\)]\)] W[p[k], a, b, c, d, e]\)\)h[a_,b_,c_,d_,e_]:=-\!\(\*UnderoverscriptBox[\(\[Sum]\), \(k = 1\), \(99\)]\(\((1 + W[p[k], a, b, c, d, e] - H[p[k]])\) \*FractionBox[\(a\ e\ \*SuperscriptBox[\((p[k])\), \(b\)]\ \*SuperscriptBox[\((1 - \*SuperscriptBox[\((p[k])\), \(c\)])\), \(d\)]\ Log[1 - \*SuperscriptBox[\((p[p[k]])\), \(c\)]]\), \(1 + a\ \*SuperscriptBox[\((p[k])\), \(b\)]\ \*SuperscriptBox[\((1 - \*SuperscriptBox[\((p[k])\), \(c\)])\), \(d\)]\)] W[p[k], a, b, c, d, e]\)\)i[a_,b_,c_,d_,e_]:=-\!\(\*UnderoverscriptBox[\(\[Sum]\), \(k = 1\), \(99\)]\(\((1 + W[p[k], a, b, c, d, e] - H[p[k]])\) W[p[k], a, b, c, d, e] Log[1 + a\ \*SuperscriptBox[\((p[k])\), \(b\)]\ \*SuperscriptBox[\((1 - \*SuperscriptBox[\((p[k])\), \(c\)])\), \(d\)]]\)\)UU[t_]:=U[a-t u[a,b,c,d,e],b-t v[a,b,c,d,e],c-t w[a,b,c,d,e],d-t h[a,b,c,d,e],e-t i[a,b,c,d,e]]Er[x_,a_,b_,c_,d_,e_]:=Hypergeometric2F1[-1/2,-1/2,1,x^2]-(1+(3x^2)/(10+Sqrt[4-3x^2]))-(3/2^17)x^10 (1+W[x,a,b,c,d,e])a=4.6b=0.457c=2.657d=0.95e=1.2t=0.0001U[a,b,c,d,e]>UU[t]a=a-t u[a,b,c,d,e]b=b-t v[a,b,c,d,e]c=c-t w[a,b,c,d,e]d=d-t h[a,b,c,d,e]e=e-t i[a,b,c,d,e]Maximize[{Abs[Er[x,a,b,c,d,e]],0<x<1},x]
复制代码 |
本帖子中包含更多资源
您需要 登录 才可以下载或查看,没有帐号?立即注册
x
|